

-

$$
\begin{aligned}
& \text { MUSICALP I TCH } \\
& \text { AND THE } \\
& \text { MEASUREMENTOFINTERVALS } \\
& \text { AMONG THE ANCIENT GREEKS. } \\
& \text { By } \\
& \text { Charles W. L. Johnson. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MUSICAI PITCH } \\
& \text { AND ' } \mathrm{L} \mathrm{E} \mathrm{E} \\
& \text { MEASUREMENTOETNTERYAIS } \\
& \text { AMONG THE } \\
& \text { ANCIENTGREEXS. } \\
& \text { By } \\
& \text { Charles } \mathbb{V} . ~ L . ~ J o h n s o n . ~ \\
& \text { Presonted } \\
& \text { as a } \\
& \text { Tinssis for the netree } \\
& \text { OI } \\
& \text { Doctor of Philosophy } \\
& \text { at the }
\end{aligned}
$$

Johns Hopkins University.

MUSICAL PITCH

and the

MFASURFIETT OF INTERTALS AMONG THE ANCIEIT GRENKS.
--------000---.---
The material available for reconstructing the music of antiquity is unfortunately very meagre. For the study of ancient sculpture, architecture, poetry, and painting (using the word in its broadest sense)the modern world has only to turn to the existin monuments of ancient activity in each of these fine arts. The fullest aprreciation of the art of any former arge can only be grained by the contemplation of actual artistic creations lef't by the artists themselves. How little of ancient sculpture or architecture should be known, if our knowledほe were derived solely from the works of contemporaneous writers, however excellent: The study of ancient masic, althousfl we are not so badly off in it as we should be in sculpture or architecture in such a case, is at present in a condition which resembles in a measure such a state of affairs. Surpose all architectural remnins of the Greek race were utterly lost, but that ancient critics had left us not only descriptive matter, but actual plans of temples, dwellines, and so
forth. In proportion as these plans were perfect, we should be in a position at any moment to construct more or less accurate representations of these ancient buildings or even to make a life-size restoration. In such a case ancient architecture would be in a condition, so far as our apnreciation of it is coneerned, analogous to that in which ancient music now finds itself. We have admirable theoreticel treatises and we have also a few incomplete plans and specifications; for what is a musical score but a drawing or a ground plan of the musical structure? To repmduce it, all that is needed is a knowledre of the symbols employed in the specitiications and the means to interpret them according to the conventions there used.

It will thus be seen that Music differs from the great space-arts in the transitory nature of its material, sound, and in the consequent necessity for fresh representetions whenever it is desired actually to realize any of its creations.

Poetry, the fitth of the tiive great, ar Fine Aris, although it is claseed with Music as a time art, is in a vastly better position than Music for perpetuating its productions. To take the case of Greek Poetry, we are able to liay down with no little confidence mules for the correct pronunciation of
tie words and for the correct scansion of the metre. But even if by some supernatural means we should learn that all our sapiositions on these points are utterly wrong, we should still possess the major part of what constitutes Poetry, the thought, which is imperishable. The written word is in Poetry not a bad substitute for the spoken word, whether cent idpies or only hours have passed since it was written. And When, as is probably the case, all the essential feat ares of the pronunciation are in our possession, there is nothing lacking which is actually indispensable to our enjoyment. But with Music there is no other element, besides the sounds themselves, which has any claim to the name of music at all. While rhythm is perhaps, after the sounds, the most important constituent, rhythm alone is not music.

The problem presented to the modern musical antiquarian is how to reconstruct the sounds of ancient masc from the data famished by the ancients.

For the solution of the question in any given case, as, for instance, in the case of the Delphian Hymn to Apollo, it is necessary to determine some four elements, the melody, the harmony (in modern sense), if there be any, the time or rhythm, and the instrumentation, including under this term
all that concerns the timbre or quality of the sounds, and their force or the modulations of loud and soft.

In the case of the Hymn mentinned, as for the instrment, we know thet the music was sung. The determination of the pronunciation may be refieried to other studies. Howsoever settled, the question would not materiully attect the masic proper. The right dogrees oi loudness and softness and the quality or color of the voices may salely be left to our own judsment. As to harmony (in the technical sense) among the voices, we know that there was none; that which certainly existed between the voices and tre scompanying instruments, and, the quality of the tones of the instmments, are lost to us. The rhytim is preserved in tre wo ds to which the music was suntr. The rest of whet makes up the time, namely, the sped with which the ode should be played, is of minor importance. There remsins for determination, the melody or the tune itself.

In like manner the few other pieces of ancient music would have to have these various elements α etermined in some way or another.

But in ell of them the most important and the most diftficult determinstion is unaoubtediy thst, of the melody.

In seeking to find equivalents for the writton symbols by which any music is expressed the lirest sten mast be to discover the order or succession of the notes in the m ther of acuteness and fraveness of pitch, and the next must be to ascertain the exact distances at ahich the notes stand with reference to one another.

The invaluable work of Alypius en ables us to lay down with certainty the order of the notes in the Greek notation. By means of this information alone we could plot a curve of any melody, such tint every rise and fall in pitch was represented, and only the amount of this motion would remain undetermined. All the measurements are wanting and the outline is seen in a distorted perspective. The second step supplies this deficiency. We ascertain for each note the distance or interval at which it stands from its neighbors. This done, we are in possession of all tre knowledge requisite to rep:odiace the notes of any notation. Our ability to translate the notation correctly into modern notation and our ability to reproduce the sounds vocally or instrumentally, will, of course, depend for the most part on the similarity of the music in question with modorn music.

The present dissertation concerns itself with this secona step and is an attempt to show to what extent our knowledge of the absolute width of musicel intervals in generel among the Greeks is based on firm froundations. The extant iragments of ancient music themselves and the notatinns in which they are written are not discussed. It is not sought to find modern equivalents for the actual notes nor for the intervals oceurring in any of the ancient scales or systems. The sixkject is the measurement of intervals abstractly considered, irrespoctive of their place in the scale, and irrespective of their function in actual representation. 'itch is consequently considered not as a quality but as a quantity. It is not, the position of notes on the scale of absolute ecutenesis and eraveness, nor is it their relative positions as members of a collection or series of which we treat, but only their mutual reletion as to interval apart from position and franction. Therefore no discussion is made of the absolute width of the Grook masical scale as it varied from time to time with the advance of music to an independent place among the arts, nor of the sbsolute pitch of Greek notes; nor are the various scales touch ed on except in so far ss th.y throw
light on the width of certain intervals.
The ancient explanation of sound as a physical phenomenon, however insufficient from a modern point of view, is accurate enough in general for musical purposes. The important port. played by the air either as the cause of sound, or as the medium of its transmission to out ears, seems to have be en generally recognized. Aristotle knew that air surıered condensation and rarefaction in the production of sound, if this is his meaning when he says that sound is not caused by the air t: 'kine on itself a shape or form, as some hold, but by its being moved through contraction and stretching.
Aristotle, De Audib. p. 800, al. 1, Ea. Bekker.

乡क्षि

The last sentence seems to imply an actual transference ot' the air itself. So do the words: i ${ }^{\prime}$ kp en it es ix e

Ags in in discussing the effect of spooking through tubes, Ar-

xcix yefrerretr

The view that sound is a formation of the sir is fond in the Problems in the section $\mid 1 / 1$ i finis. Problems XI 23

But the other definition is miso found

Compare too

The following definitions contain the idea of \because blow on, or an impulse imparted to the air.

Adrastus in The Smymaeus De Mus. c. 6, p. 50, Ea. Miller.
(Quoted also by Bryennius, p. 394, Ed. Wallis.)
Nicomachus, Harmonices Manuale, p. 7 Meib.

$$
\begin{aligned}
& \text { tons. } \\
& \text { Plutarch, Conviviales Dispratationes VIII, iii, p. } 975
\end{aligned}
$$

Plutarch, de Placitis Philosophomum (where a numbere of definitions are collected.)

$$
\begin{aligned}
& \text { 今1 ' }
\end{aligned}
$$

piedex.

 foncosex

> Clardius Ptolemy's definition is as follovis:
> Harmonics I. iii. p. 6, Ed. Wallis.
谷＂シャ．
※Kン多 5 ．
 See too Bryennius I．Sec：iv．P．377，Ed．Wallis．

Aristides Quintilianus，De Musica，p．7，1．7，Ed．Meib：

Sounds difier fom one another in a numb r of way's. To mention a few of these, a sound may difiso from another in loudness, in duration, in timbre or quality, or in pitch. In order to define a sound completely, it would be necessary to specify a great number of p=rticulars. It would be necessary to state whether it was articulate ow inarticulete, compound or iimple, both jn respect of its complexity at any riven time, and in respect of its variability from time to time durins its existence, whether it was musical or unmusical, and, if it has that quality known es pitch, it would be necessary to give the degree of pitch, or desrees of pitch, if more than one. If the sound occurred in a piece of music, it would be necessary to give a number of additional ajata, such as its relative duration, comparing it with the context, its position in the ber, its quality or timbre ana its intensity or force. If the sound were articulate (and it misht be articulete in adition to being musical) it would involve an analysis into its phonetic elements, and a statement oí the loudness or softness and of the pitch at which it is aken or sung.

For a complete analysis and classification of sounds, it

Would be necessary to find an sfiswer to the question, Whe t is the most elementory sound imaginable? or et least to select provisionally sounds of such a noture thet they cannot readily be separated into prets. For spesch the ederments have been analyzed from early times. They are the vowels and consonants. This mist have bern done simultaneolisly w-t? the origin of Writing by means of letters - that, is, when writing ceased to be ideographic. In the caso of Music, there is no difticulty in meking a time analysis of the elements. The notes themselves correspond to the letters of a word, and the kind of sound is indicat ad more or less perfectly according to the notetion. The quality of pitch is, of course, indicated as accurately as is practicable. Other quelities are inaicated by maris and words. The analysis of sounds into coexisting elenents is a difiterent matter, and has been solved only in this certury by the discovery of Helmholtz that the quality or timbre of a note is the result of compounding 'pure tones' ac.. cordine to certain principles.

But, however successful the scientific at, tempt to tiind the elements of sounds may be, sach science whose material is sound, as musical science, phonstics, metricul science, will make its own classification of sounds for its own sphere.

For Ronetics, tile aistinction botweon srticulate and inarticilate sounds is of t'e f'irst importance. For Nusic the distinction between musical and unmusical sounds is naturally of equal importance for the subject, and it is usual in books on musical thenry to start with this distinction.

What is meant by musical ana ununsical (or non-musical)? If by 'musical' we mean 'used in music,' the distinction only involves an enumeration of the sounds so used. If not, we must find out whet it, is thet makes a sound musical. What is the basis for the classification? Unfortunately, if we make an examination of the def'initions of the 'musical sound', we shall find that the basis is not always the same. Without a clear statement of the principle on which this classificetion is mede, we run tine risk of propounding the truism alluded to, thet musicel sounds are sounds that are musical.

The distinction between musical and non-musical sounds in its main features is readily grasped. It is the diftorence between the speaking voice and the sincine voice, between the howling of the wind and the notes of $=$ flute. In extreme cases there will be no difficulty in classifying a sound under one or the other of these caterrories. In intermediate cases it will sometimes be ditticult to decide whethare
given sound has more the charncter ol e must c.1 nots or that of noise. Λ sound m: bo iretly music:l and psetly unmusical, end $y \Delta t$ the repts may be intimately connocted, or even insepareble in thonert.

But in passine from sounds which are purelv musical
throurn sll dermees to sounds which are purely noisy, it will he noticed thet there is a sradual disanpearence of c certain element. This element is pitch, and on it in the last analysis pest, ell the various manners of distinguishing musical sounds from non-musical sounds. All musicel sounds, in fect, nearly all the sounds used in music of whetever nature (the few excentions are fxmished by instraments, like cymbals, eastanets, etc., which are used chiefly for phythmic efifocts), are churacterized by the presence of this quality of pitch. We might maise the first Grand division of sunds a apund on 'he peesence or a'sence of this proner+,.. To be sare this would not rive us an infallible tost for detormining musical so'גnds, nor could we draw a hard and last line, oving to the fact thist pitch mey be present in vorying quantities. But et leest we conld separete sounds in which it is impossible to recognize eny trace of pitch from thnoc in which it is
fresent to somé extent. After that the s:3Raness or unsteacines of pitch would furnisk : means of mahing a subdi"ision which womld correspond to the distinction between musical anà ummusical sounds as it is ol'ton drawn. For example, these sounds Ere atined in Sedley Taylor's Sight Singing from the Est: blished Notation in the words, § 5 , "A musical sound is one of constant, a non-musical sound one of varying, pitch: (Cf. Soc. 3, and his Sound snd Music Sec. 23.) But this classificetion, on the one hand, excludes from the category of musical solunds that union of two notes executed on the violin or related instrument or sung by the voice, known as portamento, and, on the other, admits sounds such as those of badly made bells, in which the pitch, such as it is, may remain constant and steady.

This leads one to another principle whic: mict be used for a subdivision of pitch-sounds. The first was tha behavior of pitch from moment to moment, its cheneability or constancy. The one now suracstod is the complexity or simplicity of the arrangement of the various heights or degrees of pitch which are present at any and every point of time, in every soind excert the theoretically pure tone of science. If the constituent pitches are arraned with reterence to some
principle of order, the sond will te muical, snd on this oruer will dopend the quality or timbre of the note. On the other hand, if the arranement, is disorderly, the sound will be unmusical or a noise. A bell may hove been so unsuceessfully cast, that, apart from the veriation so noticeable from time to time, the different parts sive forth sounds of different and unrelated pitches. The result is a noise. If all the keys of a piano which one can cover witn the hand are sounded nt once, a noise is produced.

This principle of orcier, if introduced into the classification first noticed (based on the steadiness of the pitch), would subdivide those sounds whose pitch was unstesdy or varying into twn classes, of which the orderly class would embrece sounds which are admittedly musical, (portamento), but are often excluoed. In this subdivision the orderly veriation in pitch is in the control of the ertist (the violinist or singer). In the class in which the pitch is steady, the orderly disposition of the constituent, pitches (the overtones) is furmished by nature, and varies according to the instrument (and is the cause of the timbre.)

Pitch is that quaiity wherein the sounds ploduced by the
same instrument and posiessing the same defree of loudness differ from one another. Omitting from consideration the element of time, we may define a musical sound by giving its loudness, its quality, and its pitch. We may compare these three manners in which sounds may differ with the three dimensi ons necessary and sufficient for the definition of a rectangular solid. To express degrees of pitch, pairs of adjectives, are used, as high and low, acute and grave, sharp and flat, shrill and desp. The majority of sounds orainarily heard are complex in possessing a number of dilferent, but often related, degrees of pitch, but in most musical sounds there is one degree which is stronger than the others, and the pitch of the sound as a whole is taken to be that of this most prominent element. Since there is no indication that the quelity or timbre of sounds was analyzed in this way by any of the ancients, we shall not have to do with any but the nomintil pitch of a sound.

The word pitch refers of course to height. The Greek Words forpitch, zózos u...l र'x the idea of stretching or straining. It would be observed from stringed instruments thet variation in the tension of the
strings produced variation in the pitch．A similar state of affairs might easily lie noticed in the voc el preens in sing－ ins．Of course the name for pitch might have be taken from the iupa of the size or length of strings and of flutes．So far as it goes，the fact that \quad n＇s and oks，，s are derived from $/$（Ifc may be taken as evidence that the earliest stringed instmments had strings of equal size and length．Increase and rel axation of tension produce heightening and lowering of the pitch respectively．The Greek words Er！and answers， are used for these operations．Height in pitch or high pitch is expressed by

the reverse by Jス」にテns， the adjectives 3 ，＇s and $3 \times /$＇s signifying acute and trave respectively．

A rigorous definition of pitch does not seem to have been attempted in the ancient works on musical science．It was usual to define the term by means of $\dot{C} \bar{\jmath}\rangle=$ and
 Either the idea of height and depth in pitch was assumed and pitch itself was defined as that which is common to these，as was done by Claudius Ptolemy（ Harmonics，Bk．I．，c．iv．p．©，

Ed. Wallis - Ore ra Vol. III. -

 As 'limit' covers both 'end' and 'beginning', so Tics

Compare Porphyry in his Commentary on Ptolemy's Harmonics Ed. Wallis, p. 258: "

or,
from the notion or chance in pitch, as observed in the tones of the human voice and elsewhere, the concept of upward and downward motion was derived, and pitch was defined as the
 This is the method employed by Aristoxenus. To's is
 (Harmonic Bk. I. P. 12, Ed. Nieibom.) Conversely rírúr.

One of the earliest definitions to be established in almost every treatise on the theory of music is the definition of the musical sound.

Aristoxenus set the example in this matter foe a number of followers by preparing the way for this definition with
 the motion of the voice. He says (p . 3, Nib.) the a description of the various kinds of \quad 'Ur", in order to define $y f^{\prime} '$ jr ns . Aristoxenus, Harmonic, I., P. 3: $\quad \alpha!$ ce. coúrev cig de"y, tíveos, riv rave jíververerefr

人!vai,s fur its is that motion by which
one passes from a high note to a lower note, or from a low note to a higher note. It is, briefly, change of pitch. The ancients recognized tho manners in which the pitch of the voice might move. Aristoxenus, p. 8, Ed. Fieibom:

It is evident that the prisate fron one deyree oi pitch to another must be made in one of two ways. Either the pitch of the sound changes suddenly from the initial stete to the final state, so thet at no moment does the sound rest at,or pass throumh, any intermediate deधree of pitch between the extremes; or the pitc: chan :es gradually in the direction of the final pitch, that is either upward or downward, and so passes throuth every possible intermediate derree, but rests at none of them. Tnese are the only $t_{n O}$ ways in which a sound emanating from one and the same instrment cun pass from one pitch to another. They may be compared rospectively to stepping and gliding. In the one case the intermeaiate space is leapt over, in the other it is treversed. Now it might cerelescly be supposed that ince pitch is one-dimensional it would be impossible for a sound to alter its pitch without passing all intermediate degrees, unless there was an intervening moment of silence. Althoush in the actual production of such a cherige on a musical instroment capable of producing only one sound at a time, such as the voice, it is probebly impossible to moke this leap of pitch without a small moment of silence, it is not theoretically an impossibility as will io reidily aamitted whon we consider that a new sound at the
now pitch may be started at, any moment immealstely before, at the exact instant of, or immediately after the cessation of the old pitching.

If now we consider the sequence of sounds emitted by any inet...ment and regard only the manner in which chan of pitch takes place, in is plain that the former of the two manners, which we may c: ll discontinuous, implies for practical purposes rest at various stages, that is to say, there will be a period of fixed pitch before and after each leap. We can of course conceive of a glide taking place immediately after a step, but such a performance would not be musical in any sense. The second manner, continuous chance, implies nothing as to ?rods of i fixed or stationary pitch. The glides may connett whet, are culled notes or musical sounds as they are defined in the treatises (a musical sound is one that has a constand pitch,) or there may be no such notes, the pitch may never Become fixed, but may wender up and down it random. Connecting glides are dented in music by the term portamento, and are familiar when the instrument is capable of this chan re of pitch. Such ere the voice and bowed stringed instruments and some wind inst, suments. An example of aimless wandering of pitch is the howling oi the wind in a stor. concertion of tie twn kinds ofimotion．Kév，ós ounc X少 is（not thet sort in which th？alreitions ire continuous， but onl：＇）thit sort in which both the altemations in pitch are continitous and there are no dogrees of fixed vitch．N＇，，，＇，r
 moving in whic！the ritch leeps ovor intervals（and so is called＇intarvallate＇），and then rosts t virious derrees of pitch．Aristoxenus is the best authoriuy on t＇ie subject．认．\＆，S，c．2S，Fd．．．．ilb：

 … 就
‘ㄷǹ,

 Why was the intinction of the kinas of motion regarded is of so treat importance? It finds no place in modern works on the theory of music, unless it is implied in the definitions of musical and unmusical sounds. ${ }^{\text {l }}$.

1. Sedley Thy 101 Sounds and Music p. 48, End Ed.: "The difference, then, between music el and non-musical sounds seems to lie in this, that the former are constant while the latter are continually varying. The human voice can produce sounds of both classes. In singing a sustained note it remains quite steady, neither rising nor falling. Its conversational tone, on the other hand, is perpetually verying in height even within a single syllable; directly it ceas-

The reason for the great prominence given to this motion must lie in the relatively rreater importance of the voice in ancient music, due more to the inferiority of the instranents than to any sreater appreation of the canabilities of the voice on the part of the :ncients. Few at the present day consciously fesl the chrnees in pitch which accompany the spoken sentence. The Greeks however were very sensitive to this element of speech. We have onl: to point to the fact that their written accents express this rise and fall of pitch. The limit=tions of this movement in point of acuteness and Eraveness are given by Djonysius of Halicarnassus in his treatise, De Compisitione Verborum. He says that the compass of es so to vary, its non-musical cnaracter disamears, and it becomes what is commonly called'sing-son'. Compare the same author's Sight Sinधुnモ from the Estiblished Notation, Macmillan \& Co., 1u90, p. 1, Sec. 2. The ta kinds of motion of the voice would then corres,ond to particular cases of musical and non-musical sounds - name $1 y$, the tones of the human voice when sneakinr and singing.
the human voice is a Fifth:

Dion. Hal. De Comp. Verb. XI:

Of course the manner and scope of this variation will be differment in different languages. For German, Prof. Helmholtz gives a range of in octave, affir ative sentences ending with a fall of a Fourth, and interrogative sentences with a rise of a Fifth, from the moan pitch. In some languages emphasis is indicated by a rise in pitch; in others, as Swedish, by a fall. (See Helmholtz - Ellis - p. 23.)

The passage in Aristoxenus where the two kinds of motion ar identified with the singing and speaking voice mans as follows:
p. 9, 1. 20, Ed. Meiborn.

I. Sensations of Tone, end English Ed. 1885, by Alexander J. Ellis, p. 238. As is done in this work, the terms, octave, Fifth, Tone, etc., when used as the names of intervals, are hare written with a capital initial letter to prevent ambiguity
minn-mine \qquad
a
$+\sqrt{4}$

We have seen that the distinction between the t yo sorts of motion of which the voice and a few instruments are ca－ noble，name y，tare distinction between tire continuous and the discontinuous motions，derivesits importance from the fact that the meloảy which accompanies speech was felt to exist and was compered with the melody of formal music．It has also been shown，it is hoped，that when this difference be－ tween the two kinds of motion is analyzed，it turns out to be really more a difference of steadiness and unsteadiness in

 it is steady now at this height，now at that．If now we u－ nite these tho states of pitch，and imagine a sound，first to resound steadily at any pitch，then to move so that the pitch is sharpened or flattened continuously，and then again to re－ sound steadily，we have the phenomenon celled portamento．
 some sort，of motion，bit has in common with ベンシノノ，
 on mich alone can st tue music be based an without win it would be impossible even to gain an ikea of a musical inter－
val. As to its inc in sememe in whit tile kind of motion was considered, it would have to be classed under continuous motion, modified by periods of rests. Aristoxenus did not overionk this form of pitch-movemant but recognized the fact of its existence, mile dismissing it from consideration. Aristoxenus, Harmonic Elements, p. 9, Ed. Meir. Sc. 27.

Ert it is not easy to see why the whole of continuous motion should not bo omitted, il any part of it is. Music proper begins when fixed derrees of pitch are selected for use in the construction of tun ?s. "The first fact hat
-
we meet wit in in the music of all nations，so fir as is yet known，is that alterations of pitch in melodies take place by intervals，and not．by continuous transitions．＂（Helmholtz－ Elis， 2 250．）But we mist take the Grenk treatment of the subject as we ind it．

From the letter half of ty passage quoted at p．27，I．lIz （
mentor was avoided as much：sosibible in sin inf．

Aristides quintilianus makes a there－told division of

インバィノ゙s，in inch the portamento is provided tor．
Arist，Quint．D？Mus．pe，Ed．Meib：

 ie es kxictaroivi

We mast now consider the method employed by the wrest Pytha－ gorean（using tee term in its musics l application）， Cazudi：us Ptolemy，the Alexandrian mathomatician，astronomer，
and seograner. Hus Harmonics in three books is of equal importance with the musical works of Aristoxenus and Aristides Quintilianus. Ptolemy may be considered as the representafive of the more mathematical of the two great rival schools in musical theory - the Aristoxeneans and the Pythagoreens. Aristides is classed by Gevaert as an eclectic.

In order to fix tine position of musics l sounds in rebatin to other sounds Ptolemy proceeds in his treatise in the following manner:

After two preliminary chapters, we come to a chapter on the nature of pitch, and then to one on sounds and their diffferences. The word for sound in general is y'íy is, Which Wallis renders by sonitus in his Latin translation.

 is technic r? 1 y restricted to the meaning 'musicel sound'.

The separation of sounds into two classes according as pitch is a sent or present is implied, unless to be sure pitch is predicted of all sounds whatsoever. The first classificadion we meet with is that of sounds which have pitch. into two
coups according to the nature of that pitch.
$\underline{Y}{ }^{\prime} y \prime \prime$, he says (Harmonics I.iv.8, Ed. Wallis) are
 $?, r, r$ are sounds which are unchangeable in the
 those which chare their pitch. His words are:

$$
\begin{aligned}
& \because 010, \quad \text {, }
\end{aligned}
$$

The word here rendered 'pitch', róros, Ptolemy
himself hastens to define in the lollowine sentence, quoted

$$
\begin{aligned}
& \bar{T} \leftarrow d \cup=5 \text { xi as axis. }
\end{aligned}
$$

昰

This equality and inequality of pitch refers of course to the possibility of change which any sound may undergo in the course of its existence. But the terms, focoror and $\dot{x} r$, óze row , are also used in a very ifferent sense, a sense which is met with in the very next chapter of Ptolemy's treatise, and indeed even at the end of the pres* ont chapter. Ambiguity in t ne use of terms has always been in music a peculiarly fertile cause of misunderstanding. The difference in the meanings is well stated by Porphyry in his comment on this passage (Commentarius Cap. iv. p. 258, Ed. Wallis). The other use of the words will not cause difficulty, s the difference is so clear. In this meaning the Tóvas refers to the pitch of notes as compared with $t h=t$ of other notes, and used in this way the terms are 'f frequent service in demonstrations of the Pythagorian theory of consonant and dissonant intervals. Porphyry says p. 258, Ed. Wallis:

(We might say that EH in the key of B major was'equitonic! with F.) People call such an

KTórr2o
 more properly Sucres (and not merely yógos but (\leftarrow)/, The other meaning, Porphyry containias, refers to parts of one and the same sound, $(p, 259$,$) as$ the beginning, middle, and end. Such a sound might with more exactness be called犬ucie overt i's

Ptolemy next takes

and divides t:iem into
ie бuvax<és
aced we dewy FMÉrar. Definitions follow.
"Continuous sounds (xófan Jovaters) are those, the regions of whose changes (in pitch) in each disection are not manifest, or of which no pert whatever is io r'rovos for a perceptible interval (of time). The same sort of thing is seen in the case of the colors of the rainbow. Of such a nature are those sounds which sound at the same time as their pitch is being raised or lowered, even while this chen es is being produced." The lowing of cattle and howling of wolves are given as examples of these continuous sounds. Porphyry adds the attempts of beginners at sing ing, who cannot strike the right pitch at first, but feel for it

Th रे

 Aa Bast, ix

 róras. (p. 260, Ed. Wallis.) He also
gives as an instance tie tuning of stringed instruments. such continuous sounds are unfit for music (harmonic).

 those sounds, "the region of whose chancres are manifest," that is, the spaces or lengths - pitch distances - traversed are measurable; or such sounds arise when their parts remain 'equitonic' for a perceptible interval. As a parallel he fives the juxtaposition of prese and unmixed colours. Sounds like these are suitable for music (harmonic), because hey are bounded by : 'reNo, Y. 601 and my be compared by the order of their excesses (L'a fox + ! that is, by their ratios.

Continuous sands she，hen，sounds in which the varia－ tion in pitch takes place in such a way that it auvances by in－ sensible gradations and th et it has no definite limits．Dis－ crete sounds re those in which the pitch moves though well defined distances．The two classes are chase acterized pres－ cicely by the two kinds of K＇́rrクリン explained by Aristox－ enus－the continuous and the interval late（ N＇，

Like Aristoxenus＂classification of pita motion the Ptolemaic classification of sounds is not quite rigorously logical．The species do not together cover as much ground as the menus of which they are species．As in the other case， there is no place for slurred sounds，which must be classed
 the slur＇，of tither tie portamento itself t，must be so classed． But these sounds cannot come under the definition of y＇＇$\neq 1$ Nut x＇is，because the latter have no definite bounds to the pitch movement；on the other hand they differ from
 and not by steps．

Furthermore

$$
\text { Y'ffer } \text { reef, , ers o, are by }
$$

definition taken ort pi the chis of loge 'xNcóratar to which they profess to belong, because they may be analyzed in'o groups or series of xópol iso' raver The ole difficulty (and it is one which must be durraed asminst in every classification of sounds) is thor what is understood by a single sound is not an instantaneous sensation of the auditory nerves, which we may consider apart from its surroundings, as if cut off from both what sounded before and whet is to sound att simar a. Nor, on tic other in nd, are we justified in regarding too long a dumzion of tone as form-
 am rosily y, 'soc , 'órato, TheclassiI'ication must, have been traditional from the time of Aristoxenus, if not earlier.

We have notice (nate 35) that Ptolemy regt raided Yóqo, 'rupرuerécel as suitable for the science of music,

 p. 8, last line.) The former Ptolmy, after the definitions are completed, calls \& $\nrightarrow S_{57}^{\prime} \gamma 101$

सófr. そGórnere
are not included is: name; but they re plainly: embersed by the dofinition. It is possible; hoaev-r, th ot in tue ! יimery
 Ptolemy had in mind moses of one or lame groups of sound, and that, as an example of iofocrar x of or ne might have given the tones of an inst, mont like the whistthe or the cymbals of the horn on any instrument which can produce only one note. The term for rye would in this case be restricted to musical notes which occurred in melody.
 in the Greek treatises on theory according to the manner in which the subject is approached.

Aristoxenus, as we have seen, makes the development of
 We are not then surprised to find that Préroe

ytoryos.
The detinition of Thrasylus we owe to Theo Smyrnaeus.
Theo Sm. De Musics, c. 2, p. 47, fol. Ed. Hiller:

$\geqslant 0$ जै

※!

Comine

 Quoted verbetim, (excert (t.1人, /3 is jec - didese) by Bryennius ρ.

The restriction imposed by the word évx wéveos contines the music: I sound to the limitsof the recornized scole.

$$
\text { Ptolemy de土ines } \mathscr{F} \overbrace{}^{\prime} / r c s \text { as follows: }
$$

:armonics, I.c. iv, fin. Wallis, p. 9:

$$
\text { Eréres2 } 2 \text { trror. }
$$

Nichomachus iamonices Nínuale, Neib. n. 7 :

$$
\begin{aligned}
& \text { y cópr" }
\end{aligned}
$$

$$
\begin{aligned}
& x=x^{\prime}>0
\end{aligned}
$$

Porphere in iis commentary on the pess:ay of Ptolemy
quot a bove says that Ptolemy chanedea the usual definitions

 rocis Sit of ffútrous ơfous rov ofoóprov uesx $\lambda \alpha, 3 \omega 2$ нे

 yedtarixe "po's यir aגcx, ìs óaphixs cis rír

 - róc ća' '

Aristides Quintilisnus, De Musicá, p. 9, 1. 2, Ed. Meib:

 ut

Faudentius defines $4 \theta^{\prime} y Y^{\circ} \mathrm{S}$, in the same words as Aristoxe-
 definition (at Meib.p.12) of T.रのs The passaee reaas as follows:

 $4:$

Bacchixa Senior in his Introdactio Artis Musicae modifies the det＇inition of Aristoxenus by adding cumci！＇s，as Porphyry does．

Bryennius，Harmonics Bis．I．Sect．iv．，（Ed．Wallis）p．377，

 दर्थの．

Two notes，or musics sounds，are said to form an inter－ vol when they differ in pitch；or，an interval is the differ－ once of pitch！between two notes．

The definitions of interval（ o \＆んくそce Greek musical works will now be quoted for the most part in the order r^{\prime} of time．

Aristoxenus Rarmonic P .25 , Ed.Meib)

Thrasyllus's definition of \quad čx
folund in Theo Smyrnaeus, De Musica, c. 3, p. 48, Ed. Hiller:

Plutarch, De Animae Procreatione, XVII, $1020 \mathrm{E}:$

Ptolemy's Harmonics do not seem tocont. in a àfinition
 үo' ठ乡 Ptol. lium. I. iii., p. 7, Ea. Wallis:

Aeli=n, as quoted by Pomphry, Commenterius in Ptolemaeum, Ed. Wal. p. 217 fin.

$$
\text { krox } x \neq f x^{1}
$$

$$
3 \times p \not r e \rho o z
$$

$$
\begin{aligned}
& n \times p \alpha^{\prime} \cdot o^{\prime} \\
& \delta 1 \alpha \lll \lll x
\end{aligned}
$$

p.215 11xi

$$
3 \alpha p<=3<c \quad \delta_{c} \times \phi \in f \sigma r
$$

Nicomichus, fermonices "enuale Meib. ?. 7 .

Eacchius Senior, Introdactio P. 2 :

Taudontius, Inmon. Introd. p. 4:
frx́
ytye artónctioz
Bryennius, Sectio V., p. 381, (Wal):

It will he noticed that Fryennirus as collected all pres-
vious definitions and presents them as alternatives.
For the sake of bringing out more clacrly te difiaronces
in these \dot{a}-ignitions, we me y group them in classes. Inter-
vols re defined in one of t 'e following manners:
(1) Interval is certain relation between $t: N$ sounds-
musici 1 sounds.(Thrasylud, Lryennius.)
(2) Interval is ailierence of pitches, i. e., of tension (Aristoxenus, Bumennirs), or the difference between an acute sound and "frave sound, of between t wo souncis not of the sane pitch. (Ptolemy, Aelian, Bacchius.)
(3) Interval is thet whic: is bounded or contained by t ao sounds not of the same pitch. (Aristoxenus, Plutareh, Aadantius, Bryennius, or a restion or spree (\quad ros) receptive of sounds intermedicte in pitch to the extremes, (Aristoxenus, Bryennius,) or e vocsl ma gnitude ($\alpha \in, \cos$) defined or bounded by two sounds. (Bryennius.)
(4) Interval is a passare or pasing (δ Sos) from acute to gräve or vice versê. (Nicomachus, Bryennius.)

Dismis:ing (1) because it is too indefinite, we mry notice thet the definitions numisered (2) merely express the fact the t it is pitch-difference on which the relationship depends, but do not imply the there is suche thine as difference in the size of intervals and that measurement is possible. The di lference oi pitches miE t be like the dillerence of weights, as the difference between $t: \%$ bodies weighing two nd three porands, on a differncs in two shejes. In the difinitions numbered (3) the idea of a space or distance is claarly broutht 46
out，una in（4）the notion ol movement from one bound to the other is included．Both（3）and（4）imply more or less cle rly the infinite subdivisibility of pitch．This is very plain in the definition thet on intervil is：spece receptive of intarmediate pitchss，for an intarmediate pitch womld form two new sm＝ller intervels，which would themselves also be di－ visible into yet smaller intervals．

In（4），and to a ceetoin axtent Elso in（3），イノVyンノ rvectus syems to lie c．t tie botrom of the concoption of ＝n interval．Withrut this ide：of z eradual paisere from one pitc！to another，it is herd to see how chanse oi pitch coulà be resurded as e．passare et all．If the pitch chenes sud－
 the sensation does not surgest a transition or transierence，so muc ${ }^{2}$ ．s transformation．The atifet is similar to that pro－ duced by a suddon change in color．Int．urmediate s aules of color are not prosent in the mind．The continuous nethe of pitch would however be one of th a قerliest points to be ob－ served．Tt would readily be admitted the for prectical pur－ poses pitch seemed to be a continuous quentity and not a dis－ crete quentity．When however the question of finaing a means of moasuring difference of pitch was presented，it
would be nature. 1 to ende"ver tu lind a smallest posit ole intervel which might, serve es g $n=t u r=l$ unit.

We have in Plato's Republic Bk. VII, p. 53l, A, fol. a reference to such attempts.

 óceoror औरुद कि

(Quoted in The Smyr. p. 6, Filler.)

Rut it is evident in desling with the sensation of pitch, that there is the widest men? for differences of individual pinion, ard even if a considerable number of comp tent persons could arree that some given interval was the smallest differ-
ence of pitch which they could distinguish fom unison, there woulà still exist the necessity for finding a method of recording the width of this interval and this record must necessarily rest on physicil considerations and so final appeal would errin lie to the intellect. Pitch dilferences, regardd as sensation, are restricted on the side of close approximations or of minute intervals by limitations of a physiologicol noture - limitetions which difter widely wi h the individual. Pitch, reधarded as a conception and not as a perception, is capable of infinitely minute gradations. There can be no interval so small thet we cannot conceive of tone intermediate to the extremes of the intervals. "The pitch of a note depends upon the period of its vibration" thet is, upon the time taken to complete one vibration. It is only necessary thon to suppose a note whose period is intermewiate in point of duration to those of the givon notes.

The ancients recognized the theoretically periect divisibility of pitch. The subject was treated by them under the head of interval. They asied the questions, Whet is the smallest possible interval? and, What the greatest?

Aristoxenus discussed the question at $p .13$, fin. Neib. Inteivals are of different sizes. of corrse this size

must be independent of tuo positions of the boundins notes on the scale of acuteness and qraveness. What is meant by the size of an interval formed by tuo notes (not at the same pitch), is a centain relation between their pitches, which may be called the diflerence in the pitches, the word 'difference' being used merely as the opposite of 'sameness'. This relation is recognized as being the same in all essential feetures in every part of the audible compasis of sounds, however much the cheractof of the interval may v ry with the $a b-$ solute pitch of the combinetion. It is well known that even consonences,if sounded in the lower register, tase on a decidedly harsher charocter, if they do not actua-ly become dissonent in the accepted mesning of that term. But the size of the interval is as certsinly rocognized et one pitch s at another.

For the measurement of the size of intervals, the first would seem to be
requisite \wedge a unit of measurement. It is a characteristic peculiar to Music, that, malike the other arts, it makes only the most sparing use of the material at its commend, s, fie r as pitel is concerned. It is said that within the compass of an averege voice two or three hindred dificerent degrees of pitch are distinguishable. If wo suppose the compess of such a
"
voice to be an ctave and a Fifth, we lind only twenty of these different pitches reprosented on keyed inotrmments, and although this number is considerubly increased in prectice, When temperament is ignored, it is still evident that there is a great disparity between the number capalle of being produced and the number actually employed. Man, t, be sire, compute thet $t o$ reprosent accurately on a keyed inst manent all the requisite notas, it ould be necessary to have as many as twenty-five keys or even $\hat{2}$ lerger number, within each octave, but many of these it is impossible to bring torether in one piece of music. They belong to unrelated keys and are often so close as to be indistinguishable in pitcr. It is equally true of Greek music that, al though a large number of notes within each octave was recognized, (twenty-five, constituting 24 querter tones) they were not all of them usable in the same piece of music. Aristoxenus is our arthority fop the statement the t tle voice connot advance by quarter tones beyond the second step. The numbur ol notes used at one time within an octave was never many more than eight.

An answer must now be given to the question, Is it possible to select for the unit one of the intervals found in actual use in music?

If we reymesent pitch by a straigit line and supiose equal. lengths on the line to represent equal intorvals, wherever teken, and then arbitrarily choose a certi in dist ance to rermsent any given interval, suc as tie octave, it will of course be possible to tind distences which will accurately represent all other intervals. The sum of any two sjech distances will then of couese ropresent the sum of the two corresponding intervals obtained by making the ac ate note of one of them coincide with the grave note of the other. In like menner the arithmetical dif'ference of tw distances will represent the difference of tioo intervals, obtained by meking the two acute notes or the two grove notes coincide.

But here we meet wi th a most charracteristic properoty of musical distances. It is that not one of the intervals Which the es recognizes as heving a special claim to a name and place in every musicel system, intervals suct the 0ctave, Fifth, Fourth, Major Tone, etc., will be tound to 'วp commensurable with eny other. To t,o distances representing intervals furnished by nature itself can be expressed in terms of

1. Two numbers are commensurable whon there is a thira number which is cont ined an exact number of times in eech.
a common unit. Int us turn to tre examination of a fea of
the intorvels whichare in a peculiar sense musical. Neither
the Filth nor the Forveth is an aliquot part of the octave.
The Major whole Tone- the ditiar nce betweon he Fitth and Fourth - is an aliquot part of neither the Fifth nor the Fourth. Nor is the Tone an aliquot part of the octave.

This tect, apart from all methemeticel considezrtions, was recosnized from very early times. The eleventh chaj ter of the fi:'st book of Ptolemy's Harmonics contains a demonstration thet six Tones exceed an ctave and the amount of this excess, it is steted, is proeptible even to the ear. Eerlier writeres than Ptolemy prove mathematicelly thet six Tones exceed an Octave by an interval, cal lod the Pythagorean Coma, whose r.tio is 524286:53144l. Since this excess is slishtly leimer than the Coma of Didymus ($80: 81$), which is the diftoronce betwenn the Major and the Minor whole Tone (or between the trae or just Major Third and the Pythagorean Major Third) Ptolemy's strement is not in the least incredible. All the difficulties sought to be obviated by the device of equal temperament arise from small intervals which are rarely larger than the Comma (80:81) by even a quarter of its size. If such intervals are felt by moderns. we cannot deny to the ancients ability to percniv small intervals of the same size. The existence of
quapter tones, at one period, at least, of the dev lopment of Fresk music, points to a higla degree of cultivation of the feeling for pitch differences among the tncients.

If then neither the Tone, the Fourth nor the Fifth are comensureble wit.l the Octeve, nor with one another, it only rem ins to be seen whether eny small interval, used in Music or selec ted for this purpose from the multitude of unmelodious intervals,cs be iound whica will serve as a measure of these and other musical intervals. The answer will be invariably the seme. It is impossible,procecding from an exwainstion of all the intervals furnished by actual music, to find any smell interval, musical or unmusical, which will en able us to express any given int ervel in terms of comon unit of mea sirement?. When this stetement is made to apply to all intorvals, howevor small, as well as to intervals like the Tone and Semitone, on whose suitability as accure te units even the ear can pass in:ne sout of judement, its tuth must necessarily be nooved by means of e. methematical demonstr tion. The mere statement of the fact will however sutfice tor the prosent. The cause for this state of allairs is lound in the
fact, now about +h be touched on, tnot musicel intervals, meaning the reby intervals which occur in actual muisic, are all expressible in mathematical retios, which are derived from physical phenomena. As before noticed (p. 49), pitch depends on the number of vilretions of the air generated in eny fixed period of time by the cause of the cound. Consonance of pitches depends on the simplicity of the retio bet ween the vi-bration-numbers of the notes. Anả in reneral the ritio between the vibretion numbers of any two notes belonging to the scme system will heve simple retios, th: t is ratios which are inexpressible in terms of small numbere. Since, now, to compound twn ritios it is necessary to multiply them tosether and not to add them, it follows that the sum of two intervals cannot be obtained by direct a dition of their ratios, nor are retios so related thet a comon constituent c an be found which could serve as a measure of their relative size. "If we wish to have a measure of intervals in the proner sense, we
two or more units, but this is evidently a reversal of the neturel logical course of piocedure, and the resultine intervals are penerally not tmaly musical, but are approximations to real interva!s.
must take, not the cleracteristic ratio itself, but the logarithm of that retio - then, and then only, will the measure of a compound int orval be the sum of the measures of the components," (The Theory of Sound,by Lord Raleigh, 1894, Vol. I., p. 7, Sec. 14 , and when this has been done, all the logarithms will be incomenstrable. But, of course, tree size of any interval c n de calculated to any required deeree of accuracy.

This ereat fact of the incommensurability of musical intervals was inom to the Greeks. That is to sey, they were aware that the intervals used in music, so far as their size or width is concerned, cannot be connected by means of a common masire. This follows from the fxt thet t:ey knew that intervals are expressible in terms of ratios. The Pythagorean school of misical theorists oonsiatently denied that the Fifth and the Fourth were respectively equal to $31 / 2$ and $21 / 2$ Tones. But, as, in modern the ory, these plain facts are consciously or unconsciously ignored, so in the ancient musical world we find the Aristoxenean school mains the semitone, dofined as holf of the wole Tone (which in tum is defined as the differonce of t -e Fifth and t .e Fourth) serve as a unit for ti.e measurement of all other intarvals. It is in56
convenient, to sevt the least, to heve no unit supilied by neture, and for tion pramoses of a practic:l notetion, some sort of a m roximete unit would sem almost a necessity for a music developed to the point of demandine different keys. In teschins too, it is very desirable to be able to regard that scale, in which progression is made by the smallest steps recotrnized, as composed of equil-sized intervals.
For the roucher maasurments, th-n, we are qiite justified
in assuming as a unit wnetev or intwval we find most convenient for the pumose. The exact, size of suchan intervel will of course depend on the neture of the music concerned. Thus in Hindu music the octcve was re, ra roded as consistine of small intervals ($̧$ rutis), such thst 9 of them make a Foix. $\cdot \mathrm{h}$, and 13 c . Fit'th, and consequently four went to the Major whole Tone.

In Arabian music 17 apn roximately equal intervals compose the octave.

Bot ancient Greek music and modern European music divide the octave into twelve nominally equal small intervals called Semitones, of which five make up the Fourth and seven the Fifth, and two the Tone, Which is their diliorence. Brot while in modern music no interval diifering ver: widely from the
twelfth part of en Octave or from multiples tile reot, is used, in ancient Greek music on the contrary, the existence at ditrferent perinds of queptar and third-Tones equel to one-half and thothirds of the Semitone respectively, sems to be well attested. For tais reason perhans the Tone nd not the Semitone is the best unit for roumh me-s rement. Whether or not the sibtle reinenonts known as the Chrocai, which were varie-
 ties of the quarter-tone system and of the third-tone syatem, corres?onded to actual observetion of f:cts, Gree. theoretical Writers used both thirtieths and and sixtieths of a Fourth in their explana tions of tiese varions enerm. These intervals would then be twelfths and twenty-fourths of a compromise tone obteined by takint exactly two-fifths of a Fourth. It is easy to see thet a mean Tone of this size is not equal to an equaltemperament Tone, because a Founth fails sinort of ive equaltemperament Semitones, and consequently, its fitth part falls short of one 'equal' Semitone, and two-fit'ths of an 'equal' Tone. Nei ther the thirtieth nor the sixtieth part of ? Fourth is an aliquot part of the octave. In their more accurate mas xuments of intervals, the Greeks used the Fourth as a
standred of len th, were moderni use tne actave. In this or a in other resnects the Forleth played the part now triken Sy the octave. For rougher calculations the Tone and the Semitone - the sixth and the twelfth of the octeve respectively - wer freviy used. In one respect their music demanded a minuter suidivision of tire unit of measurement than does modern music. In their enharmonic genus quert-r tones were ited. Althourn obsolete so e.iy as the ime of Aristoxenus, so far es practical music was concerned, they nevertneless continued to retain a place in theory, and even after their actue use had ceased, the notation bore indelible trsces of their influence.
oymosed to tie more prictical school of musicians, of thich Aristoxenus is the formost rerresentative, strod the Pythagorean school. Pythagoras is accredited with meking the discovery of the numericel relations which exist between music.] sounds, and the Pythaéoraen school make mio the basis for the measurement of intervals. The Pythagoreans demonstrated that it is impossible to divide an interval into exact halves. (of course excention is made of those intervals which are actually created by compoundine two equel intervals.) This is virtually equivelent to provint the non-existence of a comon

unit oi mstarrement. Bu in r tio they sound a pertect method of massurine intervals. When it was discovered that the wonderful superiority which a few intervals of certain definite widths possess over the unlimited number of comparetively character ess intervals of other sizes, deronis on certain tixed arithmetical relations be tween the numbers which may be connected wi th the notes concorned, it must have been regarded as a signzl confirmation of the Pythaenrean doctrine of number. It is not impossible thet this discovery was pertly responsible for the orisin of the doctrine. If the homy of musica? sounds, and the motions of the planets depend on harmony among numbers, it, is a netural step to see the influence of number in all life.

Pitch is determined by the number of vibrations of the air made in a second or other given period of time. This number is called the vibration-number. The interval between any two notes depends on the retio existing between these two vibration numbers. This ratio will, of course, remain the seme for any and every period of time, and for all positions in the scale of nitch at which the interval may be lound. Given rny two notes, theif interval mey be calculated by finding their vibration-numbers and deducing the ratio. But the
ancients had no means either for countin€ ths number of vibrations or for accurately measuring small intervals of time like the second. Consequently ancient determinations of the ratios of intervals were based on other considerations. The most convonient method consisted of a comparison of the lengths of the strings producing the required notes, when mede of a uniform thickness and subjected to the sane tension. As it hapnens the lengths of strings are inverscly p:oportional to their vibration-numbers, so that results obtained by one method may easily be compared with those of the other when two notes only are involved, and without diffeulty when there is a series. Other methods employed were the comparison of the lengths of the pipes of wind instrments of equal bore; the comerison of the distances at whict fincer holes must be bored to produce given notes; and the comparison of the weights necessary to stretch strines of equal length as well as size, so as to produce notes which will form the required interval. (c1. Theo Sm. p. 57, Hiller.) Only very mourh results could heve be n ortsined from these l-st methods. In the arse of
 to determine accurately tize length of the vibratins column of ai", and it is necessary that the bore of the instrument be

of uniform size th ownout min til the size ol the innerholes be the sarne. A hole of smaller diameter may be substituted for one of lsrger diameter further removed from the nouth-piece. Ancient flute-m kers andouitedly availed themselves of this principle in tuninef their flzates. For ascertaining intarval mitios by measurine the distances at which the holes are placed, it would 'se necessary t, have the holes of one size only. In using strinss of equal lengta and thickness, itrutched by hanging weights of di-ferent sizes, jreat care would have to be exercised. In order that two strinscs of equal lenerth and size shall produce sounds wich form some givon interval, it is necess ry to employ weirhts which are to escr other inversely as the squares of the lengtas of strines of equil size at the same tensi on producine the same intervals; or, the lenths very inversely as he square-roots of the weights. The weights would not the refore give directly the proportions sought for. It is doubtful if the incients could lave obtained the masic: retios liom weights. Allowance woula alsn have to bo made for trıe foct that t:e weignt of the st'in per linear unit is diminished by the tunsion. Ptolemv discusses tie di ${ }^{\prime}$ iculties attendin these methods in 3k. I., Cher. WIII, (P. 17, Vallis) ot his Hamonics,

Where ne kescriles the inst maent on whic! t ie reatest reliance was placed for deturmining the rotios - the herwr
 st:ing which passed over tiro fixed brideres and one movable "ridge, which could pass from one end of the string to the othor along a scole which ron eroeth the string, end by means of hich the distences between the movable buidere and tre fixed uridres could be measured. In ihis way the retios associated wittr the vrious musical intervals could ine col culsteu. If the whole lengtil of tree strine was tuned to be in unison with the lowest note of the scale of t:o octaves, crled the 'rerect Svstem, the proper distences could be marked oft for 211 the other notes. This operation was c:Iled it i'
 method in winic? the st ing was livined in Theo Smymaeus, Expositio Remum :lathemsticarurn ad Lecendur n].tonem Utilium, pp. 57-58, ma. Hiller (De "us. c. 12;) and pr. 87-93 (De Mrs. ce. 35-36.) where Thrasyllus is quoted in extenso. We have also Euclid's treatise Sectio Canonis. See too Boeckh, De :letris Pindari, lib. III. c. vii. (Pinãari Opera tom. I. pp. 209, 210); Sleine Schıiften III Ueber die Bildung der Wel tseele im Timaeos der Platon p. 6i (p. 150)An important adv ntare giv-
en b the Monochord was nit the tension of tae thers of the string is necessarily the sams. The olement of tension is thus eliminated, and, provided care is taken to maxe the string of unifor: thickness and weight and to have sharply defined termini, tie lengths of the t.o perts of tie strines, or of a part to the whole, may be directly compared.

The question now arises, Whet are the retios whicn must exist betwan $t .0$ lengths of st inf in order to produce eiven intervals? As hefors noticed, sines the lenct of a sounding string v"ries inversely as the vibration-numeor, the question is eruivalent to the followine: whet is the rutio jetween the vibretion-num, ers of t,.o sounds fominer an intrpal?

In the irst place a few words must be said in rear ra to rorio. "Ratio is mutual relation of two nenntades of the same kind to one enother in respect of quantity, " or rather of "quántuplicity." (Euclid, Elements, V., def. 3.) It is immaterial which of the two masnitudes first receives the at tention of the mind. It is also a matter of indifferonce which torm of t.e ratio is rearded as compired wirt the other, whether the lurger is comparei with the sasller, or the sme-ler with the larger, provided one or the other manner is consistently adhered to durine one and the sume operetion. It is usucl to con64
sicier tae ter.e fiest mentioneu to be con red wit, the tom I'st mentioned, as 2 to 3, i. e. 2 c mared to 3. But if we Wish to compare two ratios, 32 to 3 and 5 to 7 , to see anich is the lereer, or wider, we miy either take the antecedents, \therefore and 5, as standaros, and ao, proceod to crane the torms of the retios until the antecedents are the sane, anci then compare the consequents (tius, $2: 3=10: 15$ and $5: 7=10: 14$, the refore $2: 3$ is wider vec-rse 15 is loreer t:1\%n lif); or we m rerard the consequents, 3 end 7 , as stendards of comparison and colnpere 14:21 with 15:21. The latter method is more usual because ratios may be regerded as fractions. The consequents then become denominators, and the fructions are compared by reducing to a comon denominstor and somparine the numeretors. $12 / 3=$ 14/21; 5/7 = 15/21) Eut it would be just, as legitimate to reduce the nume rators to a common numerator, 10 , and then to compare the denominators, 15 and 14.

Ancient arithmetic, like modern srithrnetic, m de a distinction betwoon 2 ratio and the inverse retio. When the sreeter of two numbers was compared with the less and so usuall: precनded it, the ratio (λ of 5 5) was called "folc)os. When tre less ines com reà irith the remeater, the ritio wis
celled var boyer . The ancients then uistimmished the kind of ratio, weco•diner as he antecedent was greater thun, was equal to, or was less than tue consequent. Theo

 Eque ratios are those in which the terms are equal. Ot Ratios where the first term is treater than the second, five

A multiple ratio is one whose fir psi term cont ins the second an exact number of times. A superparticular r io is one whose first term contains the second once and also an aliquot part of the second. A superpartient ratio is one whose first term contains the second once and:lso more than one aliquot part of the second. :tultiplex-suporparticular and multiplex-suporpartient ratios are like the last two kinds, y ut tie first terms contain tho soon terms mo ne than one e, plus a fraction. Tho gives a sixth kind, (found also in

 Ed. Miller, (De Musice c. 28). It is not plain why this
sho :la not ne incluted unier onf of trie ot:e: ainds. ibe exGule iven is tatio oi m56 to ¿43. Supuparticuler ratios ore nawed from the sliquot part of tree smaller term necessary to mare it equal to the reater term. Thus, lófos tu<́týces refers to the extru third of the smaller term, by mich tise Erenter exceeds the smeller. Any two consecutive numiners in toe ne tural series except the first two,l and 2 , for a superrerticular ratio. The ratin $2: 1$ is included in the multiple ratios.

The Sto'loyo: have die same names as thuse given for the rfólogoc, but heve the prefix irct-adied,

No., mu̇ic:- inturveis, cs is well known, dil.er eetty in c:racter, es neil s in size. Thrt, is tu say, notes
 peculiar reletion to one another, which other notes do not posiess. Some intervals are decidedy more ples sing t an others, when bot: notes sre sounded toget,her. () the sis are so disarreeable that they may ev?n become positively pe inful. Pleasint interva-s are called eonsonant, unples sing intervels aro culled dissonant. Consonance anà dissonsmoe are then
complerant. r terns. Int?rves at in in conto ce es they lose in dissonance. We mis!t say that theoretically no intervel is absolutely sonant or or disson: nt. In practice it is usual to me a classification of interval s into consonant intervals and dissonant intervals, and to assign every interval to one or other of these classes. The line of demarcation Les varied from time th time. Intervals are called dissonant at one period and consonant at: no tier. Modern music pecosnizes neater number of conson: nt intervals than did ancient music. Many of t e intervals now called a imperfect consonnnces inf imperfect dissonances wow used in ancient music, not only in melody - note aster note - but even in accompanimisnt, or tony, - note sueinst note - but they were all c:-17.d disson: nt intervals. Their function, when 'used in correction with consonant intervals, was to refold a contrast tn the later. The elects was similar to that oi discords, employed in modern music to prevent the reiteration of conFords pom becoming n colure of wariness instead of pleasure. It is described in tue Aristotelian Problems XIX, 39:
 Yves ifc' tow télous clegcfats. Cl. Westpari, Die Mu-

 modern music admits so many interve.ls to the rinks of consonances is that the ear has become accustomed to them through constently hearing them used in simultaneous hermony. The nener l notion of consonance and dissone nce is, however, the sia now as it was in classical times.

All the consone noes, recoenized anong tne Greaks at any period of ancient music may be meduced to three principal consonant intervals, the nctave, tloe Fifth, and the pourth. All other consoniznt intervals ma be derived flom these three and consist of t or more of them added orether. It is true that the octave is equal to the sum of tne Fifth a nd Fourth, but for cortion ressons it is more proper to reaned tre Fith and the Fourth as parts of the nctave, then the octeve as the result of compoundine the Fifth ind the Fourth.

Iet us then see what ratios were aiscovered to belong to
 céree and ob̀̀ rounfew, respectively, and how they ere identified with the cores ondiner modern intorvils.

Pythagoras was amparently the firest Emong the Greeks to discover the numoric.l rointions existint" botween musjedl shund

Dion ines Laertius VIII, ll. Emennius I. i., E. 36l,Eci.Wallis. We heve the tollowine statement of Xenocrates, as quoted by Heraclides Ponticus. The pase e is found in : nexcorpt from
 Fommentarius in Ptolemaeum, I., c. iii., init. p. 213, Ed. Wal-

Cr. Mac robius, Conenentarius in Somnium Scipionis II i., 8 fol. and Join's note. Iamblichus in his Life of Pythagoras says that he was token from Egypt to Babylon and the re e learned the science of number and of music.

Pythagoras undoubtedly used a single string ow whit amounts to. proctica? by the same thine - two strings of equal length tuned in unison - and ole te ind his ratio by me-ns of = moving brides, such the it mould not add to the original tension of the string, or by stopping off various lengths on a lone string fixmished with a finger-board. The lyre would

1. Gevaert, Hist ire et Thsorie da 3 Ia Musique de l'antiquite' I., p. 74; Westphal,Rhy thmik and Harmonik, p. 62; Musik, p. 176.
 strine is crpanle of producint only ons note. There is no method by whic: a string cen be shortened. But the Egyntjans had inst mments wi th very lone strings ard wit fingerboords, and Pytia oras may easily have been ac quainteà wi th these.

The metios determined by Pytnagores for t.ee three consonances above mantioned were $1: 2$ for the Octave, tniet is, a st ing whose length is 2 sounds a note an Octave lower than one whose length is $1 ; 2: 3$ for the Fifth, end $3: 4$ for the Fourth. These retios were no doubt olstaned by direct observetion. Other ratios may easily have be on obtained tor otner intervals, eitrer directiy fmon the strine or indirectly by combining the ratios. Tlus, t e consonant intervals of the Twelfth and Double Dctave were probably found to depend on the retios $1: 3$ and 1:4 respretively. The Tone, whict is t e difference in width loetween tie Fifth and the Fourth, was cert: inl" resarded as dependent on the ratio $8: 9$, but it is probable thet this retio was often deduced from those alres y obthined, and was not directly observed from the lengths of string.

The Tone has always held a very prominent position in
musical theory owing to ti.d lects. The lij mot ia thet it is the dilference of two consonances and may be tuned with great securecy by means of them. The second is that the ratio 8:9 taken six times (i.e. 262144:53144l) differs only by a very small retio from the retio $1: 2(=262144: 524288)$. This small difierence, called the Pythagorean Comma, is only a little larger then the ordinery Comna $(80: 81)$, an interval which is neglected in the tuning of modern keyed instr"גments. Owing to these two facts, which we may almost cell arithmetical acciapnts, the Tone has received the sttention of musics theorists to an extent which is not warranted by the musical qualities of the interval. Other intervals, approaching it in size, and elso called ton?s, like the interval 7:8 (sunerosecond or septimal second) and 9:10 (Minor tone) are used in modern misic quite as frequently as the Major tone $8: 9$. But because the Major Tone was the only difference between intervals recognized by the Greeks to be consonant which was not itself consonant, it was given an important part in the formation of theoretical scales. The facility with which it may be traned would also undoubtedy have great influence in causing it to appear in scales as actually taned on t"e lyre. But if it is possible to draw conclusions by analogy from
-
ficets presented to us in tha history of monerr theory, it is very probable that this Major Tone impersonatsd, so to speak, otner intervals similar to it in size. I of ten happens that the real interval, the interval as actually sunct, or, perhaps it wald be better to say, the interval as the singer dosires to sing it, is misteken tow some other interval, because it is approximately equal to it. It is not at all unlikely that the same thing took place in ancient theory. The scale whic is constmeted in the Timaelus is artificial in this resnect.

This passage (Plato Tim. $35 \mathrm{~B} . \mathrm{fol}^{\prime}$) is perhans the earliest in which the sonsonant retios are mentioned. It is to 2. O observed, however, thst there is nowhere any reterence ${ }^{+}$o music in the text. The scale is essentially a theoretical one. The procedure is as follows: First the double geometrical quaternion or tetractys of the Pythegoreans is fomed by joining to unity the tivst three powers of 2 and of 3 , thus, $1,2,3,4,9,8,27$. This tetractys may be em.nered so as to exhibit the two brenches consisting of powers of 2 and 3 respectively, by making 2 Lambda as follows:

The loft t man contains the double intervals ($\delta<r \alpha \alpha$

 the terms of every interval the harmonica and the arithmetical means are inserted. In this way two series are obtained:
$1,4 / 3,3 / 2,2,8 / 3,3,4,16 / 3,6,8$ and
$1,3 / 2,2,3,9 / 2,6,9,27 / 2,18,27$.
The sue ession of intervals in the first series is $4 / 3,9 / 8$, $4 / 3$, thrice repeated, and in the sec and it is $3 / 2,4 / 3,3 / 2$. The explanation of these series is held by commentators to be that they refor to musical scales. The ratios $3 / 2$ and $4 / 3$ will then correspond to the consonances or the Fifth and the Fourth, and their product $(3 / 2 \times 4 / 3=2 / 1)$ to the sum of these intervals, the octave. The last step is that by which every interval of $3: 4$ was filled up with intervals of $8: 9$, as many as are contrined in $3: 4$, and with $\lambda \in c u u x<x$, which Are as 24.3 to 25 万. Scales are the ret ore formed in which each note differs from its neighbors by an interval of wither

8:9 or $243: 256$, since every fifth m y be resolved into a Fouth and a Tone $(8: 9)$. Every step is theretore either an Interval of a Tone or of a Leimma. The scale formed on the binary branch of the tetrectys has a compass of thren octaves, each octave cont ining five Tones and two Leimmata. The scale formed on the ternary branch ins a compasi of three Twolfths. Each Twelf'th or Dodecachord is of the form: Nete diezertgmenon - Mese - Hypate meson - Proslambanomenus (the names ace those of the Pert'>ct System). The intervals are , Fifth, Fourth, Fifth, cnd tocetner form an nctave, like the Octave of the binamy scale, ?lus the intervel of a Fitth towards the bass, Hypate - Proslambanomenus. Eacn of the three Dodecachords then cont ins 8 Tones and 3 Lrimmata.

The foct thet t!e cmpass of sach of these se:les is nuci. lo breer then thet of ony scale described in the musical treatises goes fur towards showing that they are not too be re1. fraded as sctual music:l scales. In the Dodecacnords there is the frurthor objoction tist e.eh of them is in a aillorent key. In other words, the scelle passes into two nea keys. The question then neturally occurs, Are these scales music: l scales at a'l in the modern sense of the word macal? Do they not ruther belong to the music of numivers i i i^{\prime} : 1. Westphal, die Musik, n. 178, note.
'xformors (ceworky')?
The ancient commentators on the pasarce themselves support
th view. It is admitted by Adrastus, quoted by The Smyrnards, De Mixica, c. 13 , p. 64, Ed. Filler, that te compass of sea es actually used in music ticals far short of that of the scale desc riled by Plato, of mics the length is three Octaves and a Major Sixth ($=$ three Twelfths), but it is pointed out that it is necessary to extend the scale into cubic numbberg, hacause hey re! resent solids. In any case, the scale, even if it is purely an imaginary musical scale, seems to have been suspected by some real! scale, and me y be illustrated a na explained by supposing such a scale. We may sally see in the intarvals between the terms of the series, references to the ratios associated with musical intervals.

We have in Euclid's Section Canonist the fi: st explicit statement of these ratios.

The first ten theorems are purely mathematical, the remining nine are musical in the narrower sense. In 11 he proves that the interval ' α ' \quad 位
 supervarticular; in 13 the ratio for the $\delta<{ }^{\prime}$ arxocor is proved to be 2:1; in 14 tho ritiosfor the $\imath c x^{\prime} \quad \tau \in \sim \neq 0$,
and $\delta<\alpha$ are $\quad<\epsilon$ are shown talus respectively 3:2 and 1:3; and in 15 the ratio for the cै। $\overline{\text { tour kxivèे }}$ révee (Twelfth) is proved to be 3:1. The Isth, 17 th, 18 th, and lath re on the Tone (róvos), whose ritio is 9:8. The Largest consoncnt interval, it should be noticed, is the Twelfth (3:1). This cannot, however, be taken as evidence that in Euclid's time, the gamut had not expanded beyond the Dodecachord, Decare in the lIth Proposition, in which it is pored t: at the ratio for the octave is multiple, mention is
 ßxióletros, notes which belong to the Perfect system or two oct:ves' $\rightarrow x t \rightarrow n t$ and stand : intervals ot an Octave from one another.

The Aristotelian Problems, even if not the won of Arcstole, are thought to be not much later then his time.

The following are the most important references to the consonant interval ratios contained in the 19 th section antitied "UFa acts" Afucrías:
P:oblems XIX, 39: a a pac bouse de े cr

In this paisa e the existence of ratios is afrit ed. It is important*, to notice th t, \quad io is here derived, no* from numbers ex messing the relative lengths of sounding strings or pipes, but from the vibrations "f stings or perheps of the㛡。

TC fer of' af cz rownur cz is $3 u \%$ ested in the critical notes in Beaker's Edition. Th t lest sentence here quoted is evidently corrupt.

This passage gives the props ratios for the three con-

cued
「lx́rcオJX́far. The scale implied ias tire three notes nontioned, Note, Mese, and Fyn ste, situated as follows with retie rene to one a not'er:
Problems XIX. 41:

 and se few lines on: yo l f\&'

Problems, XIX.50:

Problens XIX.23:

 ल

 $1 \in C$.

In the bove interestine problem, I have taken t le libsuty of enclosing ócíws ktec in l./0 in brackets.

These words have cre t in from $1 . / 4$ below wheme they ere apvriate. The upper passare is best without them.

Theo Smymaeus, Expositio Rerum Mathemeticamxm ad Lesendum Pl t.onsm Utilium, p. 56, Ed. Hiller. (De Musicac. lz):

The manor of arriving" at these ratios is described in the following passage: The author: has just mention ad some of the methods employed by Pythagoras. He seems to hive conpared tie lengths and thicknesses of strings, and their tension as shown by the turning ot t e ne. s or in t hanging of weichts, the bore of the cavities of wind inst rents, the force of the breath, and t :e m sises and resits of discs and vessels.

Theo Smyr. Exposition, p. 57, 1. 11, Ea. Hillor (De Musica, c.

 rà í \&' twò roù と̌, áfl"e set́fous, ratiourros
 "rain of fà ind win ypews urpair foópos

The iollowing dierrem will illustrote the operations descrij zd:

Acute.
 Guas.e.

Then then states trovt t :ee tetractys consisting of $1, \dot{Z}, 3$, and 4 exhibits every consonent interval. It cont ins the

 He next shnais how tne rotios aly be dorived from vessels of dirferent sizes. Co. Arist. Probl. XIX. 23.

Theo Smyrn. n. 59, Ed. Hiller:

歺解

or by the division of stands:

 ¿と

Panpipes also ave the same rios. So too, it is stated, do the weifigts attached to stuns, blt, as was noted at D. 62 , such weights will not rive the ratios sought for but the duplicate ratios corresponding to them. In order to pro85
 Lengths of string 0 : be tween vibrations.

Once more, the r bios re observe bio in flutes (ke'du'́) according to the diarosition of the inger-holes. The measurements are mede from the upper end downward to the holes. The det emanation of the ratio in this manor is described at the beginnings of the 13 th Cher ter of Rheo's work De Music ca (ow Hill \because r, P. $\quad \therefore 0,61$.) The complete correspondence both of the ratios with the intervals as determined by the ear, and of the intervals with the metros as observed, is stated in the words of Adrastus, as quoted by Theo:
 Cd Stiles.

 k $\varphi \times$ a of sic.

The following paragraphs are devoted to showing that the ratios may be compounded so as to produce the sum of the corres ondine intervals, and th et consistent results may be ob-
e
tined from arithmetical operations performed on the rit ios.
We tum now to the consider ration of the quaternions, which were rerarded by the Pythasoreans as endowed ivith peculiar properties.

Theo has already mentioned the tetractys which is composed of the first lour neturel number and so constitutes the
 p. 82 fol lowing.)

He returns to it in chapter 37 .
Then Smyrna. De Mus. c. 37;0.93, Ed. Hill er:

 सxiे मे

The toes up next the tw-brenc:ied qu:-ternion which Plat discusses in the Timaeus (35 B.fol.) (See p.73) One branch is to med ot odd n mere, the other of even numbers. Unity is both even and odd and is common to the two branches. The following is the arrangement in which the branches are shown to converse:

Tho Smyrn. P. 35, Ed. Hill er:

This tetractys had also the merit of consi sting of seven terms - a number which differs from the other nine members of the decade in that, it neither tenarates another no: is genderted by another - in other words, it is prime and is not a facto: of any of the first tan numbers. (Thea. Smyrn. p. 103, Ed. IIiller.)
 his De Animae Procreatione in Timaeo Platonis. Altor commen ins on the Pythegorean totractys, the number 36, (De Anim. Procr. c.xxx=l027 F , then c. xi=l017 D. For this order see Paul Tann ry in the Revue des Etudes Grecques, vii, p. 209.i, Platapch confers even higher praise on the double tetractys s.t ioreth by Plato in the Timaes. In it, as wes noticed Shove ($p .73$) the laft ranch consists of lour powers of 2 , and the ight, of four powers of 3 .

The Lambda-like arrangement Plutarch a tributes to Crantor $(1027 \mathrm{D})$. The afivan taice gained is that like powars may be more aasily compared for pumoses of multiplication and addition. By adint like powers $\%$ obtain 5, 13, and 35. These numbers, it is stated, were sisnificant to tne Bythasoreans of viriolds musical conceptions. The firest, 5 , thay called c, cyér
 on the suphosition that the "fitith of the intervals or the Tone" is the firest, which is addible. It is not easy to see
why the smallest audible interval, which seems to be the meaning of the words $\pi, \widehat{\omega} \not \subset c_{2} \phi \theta \in J^{*} k+c^{2}$, should be called Tfof'cr, unless it be that they regarded it as the 'food' or material out of which all intervals are silt up.

The whole passage runs as follows:
Plat. De Anim. Procter. xii., 1017 F.:

For 'furor I otter the conjecture ψ on oz. The explanatory clause, "rte 'rićyÉjfct, seems to support this view.

The parsee continues:

 pơátortas.

It was a cardinal doctrine of the Pythagoreans that the Semitone (called by them both Leimma and Dis sis, see Theo, p. 55, 1. 13, Ed. Hiller.) was not the exact half of a
1.

Tone.

Why 13 was identified with the Leimma is not st thea in this passage, bit in Chanter xiv, in which the Tone is denoted by 27 , the grounds for calling 13 the Leimma may be seen. We shall recur to this point later on (p.95).

The third number obtained by adding like powers of 2 and 3 is 35 , the sum of 8 and 27. This the Pythagorean called y... . . x. Besides equalling the sum if the first two cubes it consists of four numbers $6,8,9$, and 12 , which include the arithmetical and harmonical progressions. $5,9,12$, is in Arithmetical Progression and $6,8,12$, is in liarmonical Progression.

Slut. De Anim. Proce. xii., loll E. cont.

1. Sp. Plut. De Anim. Procr. c. xvii, lo 20 E.

 vance the lieqinuing op chap ter xirici

 $a^{\prime} r \times \lambda$ críaz 川GpetyórrwL.

To illus rete the proposition : rectangle is constructed whose silos are as 5 and 7. The whole area will then be 35 . Lines parallel to the sides are then drawn, cutting the side whose lang th is 5 into tin parts, 2 and 3, and cutting the side those length is 7 into trio parts, 3 and 4. The whole rect inale will t ten be divided into four compartments, whose areas Will be $6,8,9$, and 12 (sum=35),

and these will include the ratios of the 'first consone noes.' Plat. DA Anim. Prone. xii. 1018 A. fin.:

> In the next chapter (xiii) corresponding numbers in the t, on benches of the Platonic tetractys (it is so called at xiv fin. 1019 E.$)$ are multiplied torether. 6,13, and 216 ar o obtained, which are of course, the first, second, and third power of 6. Of these, 36 is at once the squire of 6 , the 1.
triangle of 8 , and two parallelograms - 9×4 and 12×3. In
these is find once more the numbers 5,8,9, and 12 and the mtios of the consonances.

Plat. De Anim. ?rock. xiii, 1018 D:

1. For triangular numbers see Tho Smyrna. n. 37, Ea. filler. $36=1+2+3+4+5+6+7+8$.

As it stands in＊$: 2$ text，tho passant e would rive：

$$
\begin{aligned}
& \text { 12 , \%, リ } \\
& 9 \text { 以EJ, }
\end{aligned}
$$

$$
\begin{aligned}
& 6 \text { ンソル バンク }
\end{aligned}
$$

out Parsmese is in ie to stand at wider interval from Note then does Hese．In no scale，however，do we find the note called Paramese of graver pitch than Mise．Paramese is always nearer to fete，the highest note of the octachord， then is Mese，irres ectively of the width of the interval

值，by．Emended in this manner，the pirsese gives us the scale：

Retuming to the double geometrical quaternion $1,2,3,4$ ，
$9,8,27$ in chapter xiv, Plutarch comments on the property peculiar to the last of the series, 27 , that it is equal to the sum oi its predecessors. The Pytha\&oweans assign tre Tone to this number. The Leimma is thus a little less then onehalf of the Tone.

Plut=Ach áoes not at this Mlace explain how 27 and 13 came to he a sociated with the Tone and the Leimma, but in chapter xviij, where he shows how the intervel of a Fou th must be divided to give the tro whole Tones and the Leima left over, he makes i^{+}plain that 13 is nothing more nor less than the arithmetical difference be tween 256 and 243. These numbers Are the smallest numbers which cen express exactly the differonce between the ratios $3: 4$ and $8^{2}: 9^{2}$. Dut as Theo Smyrn. says (p .69 , 1. 7, Hiller), in discussing this same division of the Foureh, there is nothing to prevent one from asing other numbers to express the retio of the Leimma - such as 512 to 486. Put since $255: 243$ is the rin reduced to its lowest terms, th Pythacoreans took the arithmetical diflerence of these figures to reprsent the interval. In the same way 27 represents the Tone. For, take two numbers whose ratio is $3: 4$. Jiet the smaller number stand for the $g r a v=r$ sinund. Then, in order thet this smaller number may be twice increased by an eighth
p. It of itself (wnich will corres ond to raisire the lower note t.on Tones), it is necessery that there be tao factor's 8 in the number. Since the two numbers are to be in the ratio $3: 4$, 3 must, also be i fiactor of the smaller number. Therefore the number is $3 \times 8 \times 9=192$, and the series runs:
(grave) Tone Tuse Jeimma (acute)
$192 \quad 210 \quad 240 \quad 256$
$256-243=13$, the Leimma.
$243-216=27$, one of the Tones.

This is essentia ly the method employed in chater xviii to expla in t're passa ${ }^{-}$in the Timaeus (36 3.) where the oreator"fillea up all the infervels of $4 / 3$ with that of $9 / 8$, leaving in each a froction over." But in ilato sonil numbers rerresp. acute sounds, end the scale runs downwe rds, whe reas in Plutarch the reverse is the case. In Plato's scale the Ieimmata are at the grave end of the $t e t r a c h o w d s$ - a position which they hold in normal Gree's sceles; tceordine to Plutarch's arran ement in this passare, t Leirma stinds above the Tones. The same set of firures cen illustrate these two situations 3cco.dine as they stand for leneths of strint or for vibrations or tension. Theo Smyrnaeus uses the same figures to demonstrote the proposition that the Foureth is not equal to tivo
-

Tones, and a half, but with him tie more usual course is dopted of making acute sounds correspond to small numers. See Theo Smyrn. p. 65, 1. 10, fol., and p. 67 1. 16 fol. Ed. Hiller.

In the following chapter (XIX) Pluterch mentions othor proportions which sre used to illustrete the composition of the Fourth. When the Leimm is the mianle of the three intervels, the proportion mans:

Tone Leimma Tone $\begin{array}{llll}216 & 243 & 256 & 288\end{array}$

It is, of course, somewhet illogical to identify an interval with the absolute diflerence between the terms ol the metio, instead of with the relative difference. The absolute diforence is verrable. For the Ton it is now 24, now 27, and now 32, as shown in the diagrems given ubove. For a dissonant interval, like the Leimma, the differonce may always be some number or some multiple there of (as in the case of the Leima it is 13 , or multiple of 13); but in the case of can sonances and the more prefect (i.e. consonant) of the dissonant intervals tie absolute or arithmetical ditterence my be alnost eny number whatsoever, and when the rutio is reduced to its lovest terms, it will e̛enerally be unity.

OI the three intervils int whics svery 'standiner'tetrechord Was divided when in a scele of the Diatonic genus and of the wariety or kúć called the high-pitched (反cx́rcror wirionor, or porheps, more accurately, cixcorov firovexcoz), we m:y imagine experimenters to heve proce:ded somewhet as follows. Leet the sound produced by the whole length of a string be the lowest note of a Fourth. The upper note of the interval will t, en be produced by three-querters of the strinct. In order to descend by whole tones trom this upper note, it is necess ry twice in succession to increase the lengtir of the string by on eighth part of itself. The three-fourths of the string must then be multirlied by $9 / 8$ to five the length Which will sounc the second (descending) note, and the result by $9 / 8$ amein to srive the third note. We will heve $3 / 4 \times 9 / 8$ $x 9 / 8=243 / 256$ for the length used for this note. If the whole strin is now divided into 256 equal parts, the first 13, when 'stopped off' by the linser, will give the interva of a Le imma, the next 27 will give the interval of a Tone, and so will the next 24. In tis way the Pythaeorean numerical
 with the renus and color. They form the trame-work of every sca e.

V: bes for the Ceimma and Ton me y be practically illustrated. If fire parts are measured of' ${ }^{\prime}$, the smell iriterva called Dy the ?ymha roans co of (see p.39) will be heard. We may easily obtain a proximately the size of this int-rvel on a stained instrument by first playing an open stine, then stopping off a Semitone by ear, ant italy divi in. 'ry the eve the piece of shrine stopped off into three equal parts. If one (the forest) of these parts is stopped off, the note will for with the open st ne ne, the interval in question sufficiently accurately for practical purposes.

Since our notural Semitone is s ifhtly larger than the Pythakorean Leimma ($15 / 16=243 / 256 \times 80 /$ 1.), 15 or 16 of the 256 parts would probably be taken from the whole string for soundinc tie semitone ")y ear, instead of the 13 required by the Leimma. A third of these would the refire fall very near to the 5 forming the Tofor. Like most of the Greek small intervals, this interval will seem very unhrmonious. It will readily be admitted by most persons tact the fifth of these ama. 11 intervals might easily be regarded as the first to form an audible interval wi th the lowest note.

Plutareh is discussinf t:e double eometrical quat arnion of the Timaeus. Here atain are he consonant r tios exhibited.

Plut. De Anim. Poocr. c. XIV, $1018 \mathrm{E}:$

We meet with the arithetical and hormonicalmeans arain
in Clatiter XV. The hemonic prosession is so culled beceuse it expresses the'first consonences,' as, the rreater term to the least, the $\delta\left(\alpha^{\prime} \Rightarrow \min\right.$, the Ereatest to the middle,
 The following correspondences "re then riven:

Chapter XVI gives arithmetical rules for finding the arithmetical and hemonical means of the duple and triple ratios of the Platonic quatemion under discussion. The terms are fermented by multiplication in order to allow of the insertion of the means, and ayin w the epitrite ratios (3:4) are filled up with epogdoa $(8: 9)$. The smallest number in this way becomes 384. This gives the "allowing series for the first tetrachord:

$$
\begin{aligned}
& \text { Tone Tone Leima } \\
& 384 \quad 432 \quad 486 \quad 512
\end{aligned}
$$

in which the figures forming the ratio for the Leima are double those riven by Plato in the Timaeus (i.e. 243:256). The larger numbers are necessary when the scale is continued to the Octave and the second Leima appears. Theo Smyrnaeus discusses the two series at pp. 67-69 Ed. filler (De Mus. c. 14) See Boeckh, Kleine Schriften iii. Ueber die Bildung der Weltseele um Timaeos does Plato, p. 76, (158) fol.

In chopter XVII we have anothor statement of the ratios in which musics intervals are found.

Plut. De Anim. Procter. NVII, lo F. fol.:

Plut. meh proceeds to illustrate the two methods (I021
 +K, or rein

The first statement is correct enough, not so the second.

As was pointed out at p. the stretching weights must be as $1: 4\left(=1^{2}: 2^{2}\right)$ to produce the intervo! of octave (1:2)

The pass ere continues as follows:
Slut. De. Anim. Procter. XVII, 1021 A.

After showing trot the Tone and its ratio are respectiveby the dif'forence of the Fifth and Fourth and of their ratios and that the ratios in renerat may safely se recorded as reprosent"tives of the intervals in 011 ope ions, tass charter sums up with a statement of the consonant interval ratios. From the nurner of times this point is insisted upon, it would seem that the author din not consider it quite out of the ionsin of controversy.

Slut. De Anim. Propr. KTII, 10210 :

In Chapter xxii of the Dialogue De Music, Plutarch
shows how the Octave is divisible into two consonant intervals in two manners. The fold numbers forming the Pythagorean 'h. rmony' (see p.) are used to illustrate the point.

12 , 多r" Seaswupučrwr
9 /Ix / i.. / /
8 "t.

Plot. De Musics, xxii, 1138 E.:

 Tג̀ ठì dádeka xwin óxtw'

In the next chapter，xxiii，Aristotle＇s views on the ＇inatmons＇are set forth．

Plot．De Mus．$x x i i i, 1139 \mathrm{C}:$

 いいまし，
(rit the end of the chapter) 1139 F .

See also Plutarch, Conviviales Disputationes, III., ix.,

 ,' it' '

Ptolemy is, of course, a thouregh believer in twas ratios. In explaining the Pythagorean doctrine he says, Ptol. Harmonics I., v., p. 10, Eam. Wa lis:

.

In chapter viii Ptolemy describes the Monochord und fives li reactions for its use in proving the interval ratios. If the length of the string on one side of te movable pride is to the t on the other as 4 to 3 , the sounds will moose t : e consone nee of the Fourth; it as 3 to 2, the Fifth; if 352 to 1 , the Octave; if as 8 to 3 , the Eleventh; it as 3 to 1 , the Twelfth; and if es 4 to 1 , the Double Octave.

These results, it is stated, will be very exact.
Pto. liam. I., viii., p. 19, Ed. Wallis:

Ratios for four consonances, namely, the Fourth, Fifth, acts:e, arid Twelfth, are liven by Dionysius Musicus. See ?ormyrius ai Ptol. Term. p. 219, Ed. Wallis. (Quoted by "estphel Rhythmic and Harmonic ($=$ R.u. F.Metrik I.) Supplement p. 25.)

Iamblichus in his Life of Pythagoras describes the supposeed visit of the philosopher to the smithy, when re he first receiveed the inspire tion which led to the discovery of the ratios.

On r timing home Pytheroras stretched lour strings with
weights pronn!tional to those which he had observed to sound the consonances.

 サर的年，

The following diarrem my in useful in understanding the passer:

Bryennius larmonice II. Sec. 1, p. 395, Ed. Wallis:

From these pa-seres it will be seen the among those

 most competent to jude there was substantial unanimity in the ancient world i regard to the ratios on which the Perfect Consonances depend. There cen be not the she dow of a doubt
 the modern intervas of the いeteve，Perfect Fifth，and Perfect Fourth．Even＂part from the evidence of the mathematical
 Among other feces is that rented in the Aristotelian Problems XIX， 34 and 41 ，trot the double
 and the double fr ̀ FE のよá／wと are not consonant while t．e double δ ix aromas is consonant（see p．79，and co． Pol．ت̈arm．I．，v．，Ed．Wallis，p． 11 middle）．But with the ：el of time r bios the proof is perfect．All three of these consonent intervals a bounded on bot sides by discords． If the netave is mede a little too small or little too lares the pesultrnt discord＇becomes very painful，and the same holds tare wi h slightly diminished force int ．e case oi tie Filth ard the Fox th．There is to be sure in modern music an inter vel which．epprosehes the Fourth in point of size，celled the Centime Fourth or Fuifourth，whose mitis l6：21（it is the interval between the tonic or keynote and t ne dominant Seventh r of the key，as C－F in C Major）－an interval which dieters from true Fourth（3：4），y the smear I distance expressed by tho ratio 63：64，equal approximately to the fourth of a＇just＇
.
semitone (15:16); but this interval, while frequently use in melody, rarely if ever appears as a member of a chord - that is to say, the notes composing it med o: cu" successively, but not simultaneously, and the ancient consonances were undub ed ry tuned by simultaneously sounding the notes. See 1 .
Plat. De An. Proc. $1021 \mathrm{B}$.

Since, t :en, t ese intervals are bounded br the harshest o. disson noes (harsher intervals are only to ie formant among Wry smell intarvias of the size of 2 cemitone and less, which are the intervals next adjacent $t \cap$ Unison), it is inconceiv-
 H\&oar Si, or the t any other intervals would lave given such ratios, unless they were interval's to which the term on euros would have been inapplic: be.

If, now, it may be stated as certain the the true interva: ratios of the consonances were discovered by the ancients,

1. The passage quoted at p.103 (1021 A) continues as follows: 1021 B:

it lullowstast the mole nethoc of masturs intsrels by neens of their retios may be ress rded is firmly est olished for pumozes of investi ating tne ne ture of ancient music. The condition of at'土airs mey be stated somewhet as follows: There are certuin intamels in music of suc: : charector taxt they poduce à w-ll duined enả easily reognized pleasLur ie efisct denendent on physic=1 erf physiolorical causes, Whic? ye ass xme of course to have rem in dod unatered throurh the झes. These intorvals, if even s!igntly mistuned, are chen ed in1n intervals more discordant than any of tie more usual interve Is formad in music.

Now it was uiscovered by the ancients th=t certzin mathemetical r-tios were allavs sisoc ated aith these int orvals and it was also obswed that, when hese retios were erranea on s^{*} rotcred strints and in other ways, tie instrement alwas cve out the expected consonences. Small emrors ol observation undoubtedly existed. But. it is possible to acimit the existence


```
                    1.
    Ol ingcquracies and still +o int int tutt the va sue of the
method is not im aired. We errors c-nnot have veen very
    lerme. For the ancients cort,inly dea't wi'h intervels so
sicll as sixtieths of a Fourth, whicn woulu lie less than one-
thirte nth of a just, cenitone. (see p.58).
If, then, it was posiible for the ancients to attain a
    sertain de ree of accurccy in measuring three or tour inter-
    v*ls whose chor=ster is such th t treir size is rigidly fixed
and easily identit'ied, we moy safely aflirm thet other inter-
vels, although less easy to tune correctly, must. have been
measured vit!2 the same aceuracy, when tuned, and any varistions
in the measurements orreat,? than those wice mey be sttributed
```

1. A.J.Ellis, in his trenslation of Helmoltz'e Sonetions (it Tone, expresses tne holiet that the results obteined from the Monochord by the Freok mathematiciens wers" na py feneralizations fron necesserily impertoct instmants." HelmholtzEllis, Sensetions of Tone, 2nd Eng. Ed. Iondon, 1885, p.15, note.

to the imperfeetions of the moasuring instrament must we the result of variations in the tuning. If it is reported by an ancien * arthority thst a certein interva? has sise denoted. by segrt:in ratio, ard tie interval belonsin to this retio is panduced mech*nice ly by t :e best means \therefore t our comnerd, we may be sure that we heve ropoduced the interval intsnded by tne ancien ${ }^{\text {r musician, or thet it diliens trmm t:e correct }}$ interval by a small amount probably inapprocieble. If the authonities difoer metorielly as to size o tine ratio which they assien to the interval betwe:n two given notes, it must We taken s evidence that the size of the interval was subject *, Yariction, ε state of Elliairs not unusuel in ho nophonic or pure melodic music. Eut it must not be used ss an arcuwht thet tre hole netter of intervel mea surements wis iased on misazpretensions. The strmeness to our ears of any intee val cinnt condomn it. There are many inston:es in the music of existins non-European reces o- intervals that and discorतi.nt to ou: ears.

It is for this reason that the onsonont intervals alone wit a few of the dissonant intervals, like t, Tone and Leima, aurived fimm the consnnances by simple subtretion, nve been treeted in these pies. The consonances, Decouse they are
tines or maenitudes, furmist tee best aseans of testins
methods ne meesmement. The chief imperest in the diamont intravals must, lie in their, lace end function int eforMation of sewles, reel and theoretical. The importint and widz-reachine question of the Division of the Tetrachord, or the main re in which the tian Fourths, which wi t: a Tone compose almost ev ery Dctave scaie, cre diviced, is omitted, bein ns more ranene to a jtudy of the scales thon of the intervals, as int rrvals.

The wonderfu $1 \geqslant$ large number of $\dot{\text { ais isonent interva?s }}$ clsimed ior freal music by contemporary Greek musicians rust tinerefor have ree ly existed, and $\begin{aligned} & \text { all attempts to translate }\end{aligned}$ t. A anciant notation into moderm notetion nust take this fact into ceopnt. ous keyed inst: *ments allow only thirteen antes to the netave at Seritone distances. Only wen the Freek notes hrpont,n heve pitches whic: en he respesented satisiectorily (it rarely hanpens that they c - n he represented socuretely) by the notes ni our key-board, is it possible to sumose thr the nque s fair representation of eny -iven pi ece or (ireen masic. In other e ses ie must ne sstisfieã to enncla: $+3^{4}$ frpek nusic incaucwa olements foreign to our fe?ling.
-

 researches shouls show thet the Greeks were mac mone kenly alive to mere ditterences ni nitch then are nowerr lovers of masic. Tr-inod s at are 'o 'rean the imper: ? tions ol tempered instmments, we re mneble (and it is even undesirable th: twe should try) to feel tie devistions limm the ideal intonetion. In anciant Greek music, were lielody reimed supreme wit: Rhythm, there was sundrnt opoortunity touse freely the ritch moreial hend, and the evidence 11 tends th show the the onnortinity wes innoved. But the modern woold is richlv compensated for any losi occasinned by our Ecuntiər use of nitch by the wonderful possibilities opened an by the very couse of our indilference th perset taning, nomely, our Simult, nenus Haimony.
LIFF.

Gutrizs Willim Leverett Johnson was bovn Axpust la, 1070 at Gambier, Knox Co., Ohio. He wus prenared lor collere it Annanolis, Md., at the Boston Latin School, Boston, at the Perse School, Cambridge, England, and $-t$ Mr. Marston's School, Bal imore, Md. He entered he Johns Hopkins Unlversity as an Undergreduate Student in 0ctober, lse8, and received the d.jかn of Bachelor of Arts, June, legl. Since streduation he has sttended the University as a Graduate Stradent in Greek, Latin, Sanskrit, and Conparative Philolocy. During the ye:r 1893-94 he was Fellow in Greek, and is Fellow by Comrtosy during the current year.

April, lcge.

-

$$
\sim
$$

